A novel Ca2+-independent signaling pathway to extracellular signal-regulated protein kinase by coactivation of NMDA receptors and metabotropic glutamate receptor 5 in neurons.

نویسندگان

  • Lu Yang
  • Limin Mao
  • Qingsong Tang
  • Shazia Samdani
  • Zhenguo Liu
  • John Q Wang
چکیده

The specification and organization of glutamatergic synaptic transmission require the coordinated interaction among glutamate receptors and their synaptic adaptor proteins closely assembled in the postsynaptic density (PSD). Here we investigated the interaction between NMDA receptors and metabotropic glutamate receptor 5 (mGluR5) in the integral regulation of extracellular signal-regulated protein kinase (ERK) and gene expression in cultured rat striatal neurons. We found that coapplication of NMDA and the mGluR5 agonist (S)-3,5-dihydroxyphenylglycine synergistically increased ERK phosphorylation. Interestingly, the synergistic increase in ERK phosphorylation was dependent on the cross talk between NMDA receptor-associated synaptic adaptor protein PSD-95 and the mGluR5-linked adaptor protein Homer1b/c but not on the conventional Ca2+ signaling derived from NMDA receptors (Ca2+ influx) and mGluR5 (intracellular Ca2+ release). This was demonstrated by the findings that the synergistic phosphorylation of ERK induced by coactivation of NMDA receptors and mGluR5 was blocked by either a Tat peptide that disrupts NMDA receptor/PSD-95 binding or small interfering RNAs that selectively reduce cellular levels of Homer1b/c. Furthermore, ERK activated through this PSD-95/Homer1b/c-dependent and Ca2+-independent pathway was able to phosphorylate the two key transcription factors Elk-1 and cAMP response element-binding protein, which further leads to facilitation of c-Fos expression. Together, we have identified a novel Ca2+-independent signaling pathway to ERK by the synergistic interaction of NMDA receptors and mGluR5 via their adaptor proteins in the PSD of neurons, which underlies a synapse-to-nucleus communication important for the transcriptional regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The scaffold protein Homer1b/c links metabotropic glutamate receptor 5 to extracellular signal-regulated protein kinase cascades in neurons.

Group I metabotropic glutamate receptors (mGluRs) increase cellular levels of inositol-1,4,5-triphosphate (IP3) and thereby trigger intracellular Ca2+ release. Also, group I mGluRs are organized with members of Homer scaffold proteins into multiprotein complexes involved in postreceptor signaling. In this study, we investigated the relative importance of the IP3/Ca2+ signaling and novel Homer p...

متن کامل

Glutamate regulation of DARPP-32 phosphorylation in neostriatal neurons involves activation of multiple signaling cascades.

Dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32) plays a central role in medium spiny neurons in the neostriatum in the integration of various neurotransmitter signaling pathways. In its Thr-34-phosphorylated form, it acts as a potent protein phosphatase-1 inhibitor, and, in its Thr-75-phosphorylated form, it acts as a cAMP-dependent kinase inhibitor. Here, we investigated gluta...

متن کامل

Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons.

Striatal medium spiny neurons are an important site of convergence for signaling mediated by the neurotransmitters dopamine and glutamate. We report that in striatal neurons in primary culture, signaling through group I metabotropic glutamate receptors (mGluRs) 1/5 and the D1 class of dopamine receptors (DRs) 1/5 converges to increase phosphorylation of the mitogen-activated protein kinase ERK2...

متن کامل

Bupivacaine inhibits activation of neuronal spinal extracellular receptor-activated kinase through selective effects on ionotropic receptors.

BACKGROUND Central terminals of primary nociceptors release neurotransmitters glutamate and substance P, which bind to ionotropic or metabotropic receptors on spinal neurons to induce cellular responses. Extracellular signal-regulated kinases are activated by these receptors and are important modulators of pain at the dorsal horn. The authors investigated these pathways as potential targets for...

متن کامل

Roles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons.

Local protein synthesis in neuronal dendrites is critical for synaptic plasticity. However, the signaling cascades that couple synaptic activation to dendritic protein synthesis remain elusive. The purpose of this study is to determine the role of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling in regulating dendritic protein synthesis in live neurons. We first charac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 24 48  شماره 

صفحات  -

تاریخ انتشار 2004